DocumentCode :
959434
Title :
Sparse spike train deconvolution using the hunt filter and a thresholding method
Author :
Mazet, Vincent ; Brie, David ; Caironi, Cyrille
Author_Institution :
Centre de Recherche en Automatique de Nancy, Univ. Henri Poincare, Vandoeuvre-les-Nancy, France
Volume :
11
Issue :
5
fYear :
2004
fDate :
5/1/2004 12:00:00 AM
Firstpage :
486
Lastpage :
489
Abstract :
A new deconvolution method of sparse spike trains is presented. It is based on the coupling of the Hunt filter with a thresholding. We show that a good model for the probability density function of the Hunt filter output is a Gaussian mixture, from which we derive the threshold that minimizes the probability of errors. Based on an interpretation of the method as a maximum a posteriori (MAP) estimator, the hyperparameters are estimated using a joint MAP approach. Simulations show that this method performs well at a very low computation time.
Keywords :
Gaussian processes; deconvolution; filters; maximum likelihood detection; maximum likelihood estimation; simulation; Bernoulli-Gaussian; Gaussian mixture; Hunt filter; MAP; coupling; deconvolution; maximum a posteriori; probability density function; sparse spike train; thresholding method; Computational modeling; Deconvolution; Filters; Fourier transforms; Gaussian noise; Monitoring; Partial discharges; Probability density function; Signal restoration; Sparse matrices;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2004.826655
Filename :
1288114
Link To Document :
بازگشت