DocumentCode :
959910
Title :
Noise-Robust Speech Recognition Using Top-Down Selective Attention With an HMM Classifier
Author :
Lee, Chang-Hoon ; Lee, Soo-Young
Author_Institution :
Korea Adv. Inst. of Sci. & Technol., Daejeon
Volume :
14
Issue :
7
fYear :
2007
fDate :
7/1/2007 12:00:00 AM
Firstpage :
489
Lastpage :
491
Abstract :
For noise-robust speech recognition, we incorporated a top-down attention mechanism into a hidden Markov model classifier with Mel-frequency cepstral coefficient features. The attention filter was introduced at the outputs of the Mel-scale filterbank and adjusted to maximize the log-likelihood of the attended features with the attended class. A low-complexity constraint was proposed to prevent the attention filter from over-fitting, and a confidence measure was introduced on the attention. A classification was made to the class with the maximum confidence measure, and demonstrated 54% and 68% reduction of the false recognition rate with 15- and 20-dB signal-to-noise ratio, respectively.
Keywords :
cepstral analysis; channel bank filters; hidden Markov models; maximum likelihood estimation; speech processing; speech recognition; HMM classifier; Mel-frequency cepstral coefficient; Mel-scale filterbank; attention filter; false recognition rate; hidden Markov model classifier; log-likelihood; low-complexity constraint; noise-robust speech recognition; top-down selective attention; Adaptive filters; Brain modeling; Hidden Markov models; Independent component analysis; Noise robustness; Pattern recognition; Signal processing algorithms; Speech recognition; Testing; Working environment noise; Hidden Markov model (HMM); selective attention; speech recognition;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2006.891326
Filename :
4244482
Link To Document :
بازگشت