DocumentCode
965029
Title
Design of quantizers for decentralized estimation systems
Author
Lam, Wai-Man ; Reibman, Amy R.
Author_Institution
Thomson Consumer Electron., Indianapolis, IN, USA
Volume
41
Issue
11
fYear
1993
fDate
11/1/1993 12:00:00 AM
Firstpage
1602
Lastpage
1605
Abstract
The authors consider parameter estimation in decentralized systems with distributed processors. They restrict the local processors to be quantizers and consider the optimal design of the systems to minimize the estimation error. They present necessary conditions for the optimal system based on the Bayes distortion functions and Fisher´s information. The numerical results compare the resulting quantizers obtained by different distortion criteria
Keywords
Bayes methods; distributed processing; information theory; parameter estimation; sensor fusion; vector quantisation; Bayes distortion functions; Fisher´s information; decentralized estimation systems; distributed processors; distributed sensors; estimation error; local processors; necessary conditions; optimal design; optimal system; quantizers design; Communications Society; Estimation error; Iterative algorithms; Parameter estimation; Probability density function; Radar applications; Radar tracking; Sensor fusion; Sensor systems; Target tracking;
fLanguage
English
Journal_Title
Communications, IEEE Transactions on
Publisher
ieee
ISSN
0090-6778
Type
jour
DOI
10.1109/26.241739
Filename
241739
Link To Document