DocumentCode :
968011
Title :
A stopping rule for least-squares identification
Author :
Yin, G.
Author_Institution :
Dept. of Math., Wayne State Univ., Detroit, MI, USA
Volume :
34
Issue :
6
fYear :
1989
fDate :
6/1/1989 12:00:00 AM
Firstpage :
659
Lastpage :
662
Abstract :
A stopping rule for least-squares identification is developed. The stopping rule is determined by the construction of a confidence ellipsoid. For any predetermined estimation error ε>0, if the iterates are inside of an ellipsoidal confidence region with volume less than or equal to εr, then the recursive online algorithm will be terminated with high probability
Keywords :
identification; least squares approximations; confidence ellipsoid; least-squares identification; recursive online algorithm; stopping rule; Adaptive control; Convergence; Ellipsoids; Estimation error; Linear systems; Mathematics; Parameter estimation; Recursive estimation;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.24244
Filename :
24244
Link To Document :
بازگشت