• DocumentCode
    968016
  • Title

    Linear Regression With a Sparse Parameter Vector

  • Author

    Larsson, Erik G. ; Selén, Yngve

  • Author_Institution
    Sch. of Electr. Eng., R. Inst. of Technol., Stockholm
  • Volume
    55
  • Issue
    2
  • fYear
    2007
  • Firstpage
    451
  • Lastpage
    460
  • Abstract
    We consider linear regression under a model where the parameter vector is known to be sparse. Using a Bayesian framework, we derive the minimum mean-square error (MMSE) estimate of the parameter vector and a computationally efficient approximation of it. We also derive an empirical-Bayesian version of the estimator, which does not need any a priori information, nor does it need the selection of any user parameters. As a byproduct, we obtain a powerful model ("basis") selection tool for sparse models. The performance and robustness of our new estimators are illustrated via numerical examples
  • Keywords
    Bayes methods; least mean squares methods; regression analysis; signal processing; Bayesian framework; MMSE; linear regression; minimum mean-square error; signal processing; sparse parameter vector; Bayesian methods; Estimation error; Input variables; Linear regression; Maximum likelihood estimation; Parameter estimation; Robustness; Sparse matrices; Vectors; White noise; Basis selection; Bayesian inference; Lasso; linear regression; minimum mean-square error (MMSE) estimation; model averaging; model selection; sparse models; variable selection;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2006.887109
  • Filename
    4063557