DocumentCode
968607
Title
A proof of convergence for two parallel Jacobi SVD algorithms
Author
Luk, Franklin T. ; Park, Haesun
Author_Institution
Sch. of Electr. Eng., Cornell Univ., Ithaca, NY, USA
Volume
38
Issue
6
fYear
1989
fDate
6/1/1989 12:00:00 AM
Firstpage
806
Lastpage
811
Abstract
The authors consider two parallel Jacobi algorithms, due to R.P. Brent et al. (J. VLSI Comput. Syst., vol.1, p.242-70, 1985) and F.T. Luk (1986 J. Lin. Alg. Applic., vol.77, p.259-73), for computing the singular value decomposition of an n ×n matrix. By relating the algorithms to the cyclic-by-rows Jacobi method, they prove convergence of the former for odd n and of the latter for any n . The authors also give a nonconvergence example for the former method for all even n ⩾4
Keywords
convergence of numerical methods; matrix algebra; parallel algorithms; Jacobi SVD algorithms; convergence; parallel Jacobi algorithms; singular value decomposition; Artificial intelligence; Computer science; Concurrent computing; Convergence; Equations; Jacobian matrices; Matrix decomposition; Round robin; Singular value decomposition; Systolic arrays;
fLanguage
English
Journal_Title
Computers, IEEE Transactions on
Publisher
ieee
ISSN
0018-9340
Type
jour
DOI
10.1109/12.24289
Filename
24289
Link To Document