• DocumentCode
    968607
  • Title

    A proof of convergence for two parallel Jacobi SVD algorithms

  • Author

    Luk, Franklin T. ; Park, Haesun

  • Author_Institution
    Sch. of Electr. Eng., Cornell Univ., Ithaca, NY, USA
  • Volume
    38
  • Issue
    6
  • fYear
    1989
  • fDate
    6/1/1989 12:00:00 AM
  • Firstpage
    806
  • Lastpage
    811
  • Abstract
    The authors consider two parallel Jacobi algorithms, due to R.P. Brent et al. (J. VLSI Comput. Syst., vol.1, p.242-70, 1985) and F.T. Luk (1986 J. Lin. Alg. Applic., vol.77, p.259-73), for computing the singular value decomposition of an n×n matrix. By relating the algorithms to the cyclic-by-rows Jacobi method, they prove convergence of the former for odd n and of the latter for any n. The authors also give a nonconvergence example for the former method for all even n⩾4
  • Keywords
    convergence of numerical methods; matrix algebra; parallel algorithms; Jacobi SVD algorithms; convergence; parallel Jacobi algorithms; singular value decomposition; Artificial intelligence; Computer science; Concurrent computing; Convergence; Equations; Jacobian matrices; Matrix decomposition; Round robin; Singular value decomposition; Systolic arrays;
  • fLanguage
    English
  • Journal_Title
    Computers, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9340
  • Type

    jour

  • DOI
    10.1109/12.24289
  • Filename
    24289