• DocumentCode
    969974
  • Title

    On the Asymptotic Stability of Positive 2-D Systems Described by the Roesser Model

  • Author

    Chu, Bing ; Liu, Yanhong

  • Author_Institution
    Univ. of Sheffield, Sheffield
  • Volume
    54
  • Issue
    12
  • fYear
    2007
  • Firstpage
    1102
  • Lastpage
    1104
  • Abstract
    This brief investigates the asymptotic stability of positive 2D systems described by the Roesser model. A necessary and sufficient condition is derived for the asymptotic stability, which amounts to checking the spectrum radius of the system matrix. Furthermore, it can be shown that the asymptotic stability of positive 2D systems is equivalent to that of the traditional 1D systems. This observation would greatly facilitate the analysis and synthesis of positive 2D systems.
  • Keywords
    asymptotic stability; matrix algebra; Roesser model; asymptotic stability; matrix algebra; positive 2D system; Asymptotic stability; Biological system modeling; Control system synthesis; Signal processing; Signal synthesis; Sufficient conditions; Thermal pollution; Water heating; Water pollution; Wireless communication; 2-D systems; Roesser model; asymptotic stability; positive systems;
  • fLanguage
    English
  • Journal_Title
    Circuits and Systems II: Express Briefs, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1549-7747
  • Type

    jour

  • DOI
    10.1109/TCSII.2007.908899
  • Filename
    4380269