DocumentCode :
970466
Title :
Critical Upsets of CMOS Inverters in Static Operation Due to High-Power Microwave Interference
Author :
Kim, Kyechong ; Iliadis, Agis A.
Author_Institution :
Univ. of Maryland, College Park
Volume :
49
Issue :
4
fYear :
2007
Firstpage :
876
Lastpage :
885
Abstract :
The effects of electromagnetic interference (EMI) from high-power microwave signals on the operational integrity of CMOS inverters are reported. The static characteristics of inverters were measured with and without the injection of microwave signals at power levels of upto 24 dBm and frequencies between 800 MHz and 3 GHz. Voltage transfer characteristics showed significant changes in output voltages, and substantial reduction in gain with microwave interference, due to increased drain currents and reduced transconductance, respectively. The asymmetry of the MOS devices (size, mobility) designed to provide balanced current driving capability, results in significantly imbalanced current driving capabilities under interference. A substantial increase in the static power dissipation at the stand-by "ON" and/or "OFF" states, is observed. Degradation in the noise margins and severely compressed input/output voltage ranges were observed due to large changes in voltage characteristics, invalidating noise immunity of cascaded CMOS inverters, and leading to serious bit-flip errors. The load-line characteristics showed substantial shift in the quiescent point of operation, and changes in the effective "ON" resistance of the MOS devices, resulting in increased current in the inverters. The input/output voltage range-related bit-flip errors and the static power dissipation problems, represent the most critical vulnerabilities in the operational integrity of digital systems.
Keywords :
CMOS integrated circuits; electromagnetic wave interference; invertors; CMOS inverter; MOS devices; drain currents; electromagnetic interference; high-power microwave interference; high-power microwave signals; input/output voltage range-related bit-flip errors; load-line characteristics; operational integrity; reduced transconductance; static operation; static power dissipation problem; voltage transfer characteristics; Electromagnetic interference; Electromagnetic measurements; Frequency measurement; Inverters; MOS devices; Microwave devices; Microwave measurements; Power dissipation; Power measurement; Voltage; Bit-flip errors; CMOS inverters; electromagnetic interference (EMI); noise margins; static power dissipation;
fLanguage :
English
Journal_Title :
Electromagnetic Compatibility, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9375
Type :
jour
DOI :
10.1109/TEMC.2007.908820
Filename :
4380420
Link To Document :
بازگشت