• DocumentCode
    980462
  • Title

    Noise Limitations to Resolving Power in Electronic Imaging

  • Author

    Coltman, J.W. ; Anderson, A.E.

  • Author_Institution
    Westinghouse Res. Labs., Pittsburgh, Pa.
  • Volume
    48
  • Issue
    5
  • fYear
    1960
  • fDate
    5/1/1960 12:00:00 AM
  • Firstpage
    858
  • Lastpage
    865
  • Abstract
    A theoretical derivation, verified by experiment, shows that the maximum visible line number of a displayed bar pattern is directly proportional to the signal-to-white-noise ratio. The constant of proportionality and the effect of finite screen boundaries have been experimentally determined. It is found both theoretically and experimentally that the masking effect of white noise depends only on the noise power per unit bandwidth, and is independent of the upper frequency limit of the noise spectrum, provided that this exceeds the frequency limit set by the eye. These results can be used together with the aperture response of any imaging system to predict in quantitative terms the resolution limit as a function of the signal and noise levels. As an example, the theorems postulated are used together with the measured amplitude response function of the 5820-image orthicon to obtain a universal resolution vs signal-to-noise ratio curve for beam-noise-limited tubes of the image orthicon type. The predicted performance is in good agreement with experimental results. A similar set of curves for quantum-noise-limited image tubes is also given. The effects of object contrast variation, signal integration in time, and the presence of spurious background are presented.
  • Keywords
    Bandwidth; Circuit noise; Diodes; Frequency conversion; Image resolution; Linearity; Local oscillators; Signal resolution; Signal to noise ratio; TV;
  • fLanguage
    English
  • Journal_Title
    Proceedings of the IRE
  • Publisher
    ieee
  • ISSN
    0096-8390
  • Type

    jour

  • DOI
    10.1109/JRPROC.1960.287622
  • Filename
    4066106