DocumentCode
980480
Title
Adaptive neural control of uncertain MIMO nonlinear systems
Author
Ge, Shuzhi Sam ; Wang, Cong
Author_Institution
Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore
Volume
15
Issue
3
fYear
2004
fDate
5/1/2004 12:00:00 AM
Firstpage
674
Lastpage
692
Abstract
In this paper, adaptive neural control schemes are proposed for two classes of uncertain multi-input/multi-output (MIMO) nonlinear systems in block-triangular forms. The MIMO systems consist of interconnected subsystems, with couplings in the forms of unknown nonlinearities and/or parametric uncertainties in the input matrices, as well as in the system interconnections without any bounding restrictions. Using the block-triangular structure properties, the stability analyses of the closed-loop MIMO systems are shown in a nested iterative manner for all the states. By exploiting the special properties of the affine terms of the two classes of MIMO systems, the developed neural control schemes avoid the controller singularity problem completely without using projection algorithms. Semiglobal uniform ultimate boundedness (SGUUB) of all the signals in the closed-loop of MIMO nonlinear systems is achieved. The outputs of the systems are proven to converge to a small neighborhood of the desired trajectories. The control performance of the closed-loop system is guaranteed by suitably choosing the design parameters. The proposed schemes offer systematic design procedures for the control of the two classes of uncertain MIMO nonlinear systems. Simulation results are presented to show the effectiveness of the approach.
Keywords
MIMO systems; adaptive control; closed loop systems; control system synthesis; neurocontrollers; nonlinear control systems; adaptive neural control; backstepping; block-triangular forms; closed-loop structure properties; controller singularity problems; interconnected subsystems; multiinput multioutput; neural control schemes; parametric uncertainties; projection algorithm; semiglobal uniform ultimate boundedness; uncertain MIMO nonlinear systems; Adaptive control; Control systems; Couplings; MIMO; Nonlinear control systems; Nonlinear systems; Programmable control; Projection algorithms; Stability analysis; Uncertainty; Neural Networks (Computer); Nonlinear Dynamics;
fLanguage
English
Journal_Title
Neural Networks, IEEE Transactions on
Publisher
ieee
ISSN
1045-9227
Type
jour
DOI
10.1109/TNN.2004.826130
Filename
1296694
Link To Document