DocumentCode
983271
Title
The grating-lobe series for the impedance variation in a planar phased-array antenna
Author
Wheeler, Harold A.
Author_Institution
Wheeler Laboratories, Great Neck, NY, USA
Volume
14
Issue
6
fYear
1966
fDate
11/1/1966 12:00:00 AM
Firstpage
707
Lastpage
714
Abstract
In an infinite planar array of elements with periodic spacing, the element active impedance varies with phasing for beam steering. This impedance variation may be expressed as the sum of a double Fourier series. This series is identified with the periodic grating-lobe pattern on the "
plane" which is also the plane of two-dimensional phasing coordinates. An "impedance crater," with contours peculiar to the kind of element, is placed on every grating-lobe center. The inside of the central crater, which coincides with the unit circle of real space on this plane, determines the resistance variation with scan angle of the main lobe. The central crater and the skirts of the surrounding craters overlap in this circle; their sum determines the accompanying reactance variation. All craters together form the "grating-lobe series," which gives a picture of the entire impedance variation with scan angle. In a simple example, the reactance variation associated with half-wave spacing of the elements is found to be nearly equal to the resistance variation associated with the kind of element.
plane" which is also the plane of two-dimensional phasing coordinates. An "impedance crater," with contours peculiar to the kind of element, is placed on every grating-lobe center. The inside of the central crater, which coincides with the unit circle of real space on this plane, determines the resistance variation with scan angle of the main lobe. The central crater and the skirts of the surrounding craters overlap in this circle; their sum determines the accompanying reactance variation. All craters together form the "grating-lobe series," which gives a picture of the entire impedance variation with scan angle. In a simple example, the reactance variation associated with half-wave spacing of the elements is found to be nearly equal to the resistance variation associated with the kind of element.Keywords
Phased arrays; Planar arrays; Antennas and propagation; Beam steering; Electric resistance; Fourier series; Gratings; Impedance; Neck; Phased arrays; Planar arrays; Receiving antennas;
fLanguage
English
Journal_Title
Antennas and Propagation, IEEE Transactions on
Publisher
ieee
ISSN
0018-926X
Type
jour
DOI
10.1109/TAP.1966.1138796
Filename
1138796
Link To Document