• DocumentCode
    984066
  • Title

    Sign-sign LMS convergence with independent stochastic inputs

  • Author

    Dasgupta, Soura ; Johnson, Richard C., Jr. ; Baksho, Maylar A.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Iowa Univ., Iowa City, IA, USA
  • Volume
    36
  • Issue
    1
  • fYear
    1990
  • fDate
    1/1/1990 12:00:00 AM
  • Firstpage
    197
  • Lastpage
    201
  • Abstract
    The sign-sign adaptive least-mean-square (LMS) identifier filter is a computationally efficient variant of the LMS identifier filter. It involves the introduction of signum functions in the traditional LMS update term. Consideration is given to global convergence of parameter estimates offered by this algorithm, to a ball with radius proportional to the algorithm step size for white input sequences, specially from Gaussian and uniform distributions
  • Keywords
    adaptive filters; convergence of numerical methods; filtering and prediction theory; least squares approximations; parameter estimation; stochastic processes; Gaussian distribution; LMS identifier filter; adaptive least mean square filter; algorithm step size; global convergence; independent stochastic inputs; parameter estimation; sign-sign identifier; uniform distributions; white input sequences; Adaptive filters; Convergence; Filtering algorithms; Image reconstruction; Least squares approximation; Parameter estimation; Pattern recognition; Robustness; Signal processing algorithms; Stochastic processes;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/18.50391
  • Filename
    50391