DocumentCode
984066
Title
Sign-sign LMS convergence with independent stochastic inputs
Author
Dasgupta, Soura ; Johnson, Richard C., Jr. ; Baksho, Maylar A.
Author_Institution
Dept. of Electr. & Comput. Eng., Iowa Univ., Iowa City, IA, USA
Volume
36
Issue
1
fYear
1990
fDate
1/1/1990 12:00:00 AM
Firstpage
197
Lastpage
201
Abstract
The sign-sign adaptive least-mean-square (LMS) identifier filter is a computationally efficient variant of the LMS identifier filter. It involves the introduction of signum functions in the traditional LMS update term. Consideration is given to global convergence of parameter estimates offered by this algorithm, to a ball with radius proportional to the algorithm step size for white input sequences, specially from Gaussian and uniform distributions
Keywords
adaptive filters; convergence of numerical methods; filtering and prediction theory; least squares approximations; parameter estimation; stochastic processes; Gaussian distribution; LMS identifier filter; adaptive least mean square filter; algorithm step size; global convergence; independent stochastic inputs; parameter estimation; sign-sign identifier; uniform distributions; white input sequences; Adaptive filters; Convergence; Filtering algorithms; Image reconstruction; Least squares approximation; Parameter estimation; Pattern recognition; Robustness; Signal processing algorithms; Stochastic processes;
fLanguage
English
Journal_Title
Information Theory, IEEE Transactions on
Publisher
ieee
ISSN
0018-9448
Type
jour
DOI
10.1109/18.50391
Filename
50391
Link To Document