DocumentCode :
991125
Title :
A convergent approximation of the continuous-time optimal parameter estimator
Author :
Wiberg, Donald M. ; DeWolf, Douglas G.
Author_Institution :
Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA
Volume :
38
Issue :
4
fYear :
1993
fDate :
4/1/1993 12:00:00 AM
Firstpage :
529
Lastpage :
545
Abstract :
Continuous-time linear stochastic systems that are bilinear in the state and parameters are considered. A specific approximation to the optimal nonlinear filter used as a recursive parameter estimator is derived by retaining third-order moments and using a Gaussian approximation for higher order moments. With probability one, the specific approximation is proved to converge to a minimum of the likelihood function. The proof uses the ordinary differential equation technique and requires that the trajectories of the slow system be bounded on finite time intervals and that the fixed parameter fast system by asymptotically stable. The fixed parameter fast system is proved to be asymptotically stable if the parameter update gain is small enough. Essentially, the specific approximation is asympotically equivalent to the recursive prediction error method, thus inheriting its asymptotic rate of convergence. A numerical simulation for a simple example indicates that the specific approximation has better transient response than other commonly used convergent parameter estimators
Keywords :
approximation theory; convergence of numerical methods; differential equations; filtering and prediction theory; linear systems; parameter estimation; stochastic systems; Gaussian approximation; asymptotic rate of convergence; asymptotic stability; continuous-time linear stochastic systems; continuous-time optimal parameter estimator; convergent approximation; fixed parameter fast system; numerical simulation; optimal nonlinear filter; ordinary differential equation technique; recursive parameter estimator; recursive prediction error method; slow system; specific approximation; third-order moments; Algorithm design and analysis; Convergence; Least squares approximation; Nonlinear filters; Parameter estimation; Recursive estimation; State estimation; Time measurement; Transient response; Vectors;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.250522
Filename :
250522
Link To Document :
بازگشت