DocumentCode :
994591
Title :
Yield optimization using a GaAs process simulator coupled to a physical device model
Author :
Stoneking, Dan E. ; Bilbro, Griff L. ; Gilmore, Paul A. ; Trew, Robert J. ; Kelley, C.T.
Author_Institution :
MIA-COM Corp., Lowell, MA, USA
Volume :
40
Issue :
7
fYear :
1992
fDate :
7/1/1992 12:00:00 AM
Firstpage :
1353
Lastpage :
1363
Abstract :
A physics-based large-signal GaAs MESFET model and circuit simulator has been developed to predict and optimize the yield of GaAs MESFET designs before fabrication. Device acceptance criteria include both small- and large-signal RF operating characteristics such as small-signal gain, maximum power added efficiency, and output power at 1-dB gain compression. Channel doping details are described on the basis of processing specifications for parameters such as material deposition, ion implantation, and implant annealing. Monte Carlo techniques are used to estimate yield when disturbances in the physical parameters are modeled as multivariate Gaussian distributions. The yield estimator is integrated with an optimizer so that a design can be centered for maximum yield in the presence of process disturbances
Keywords :
III-V semiconductors; MMIC; Monte Carlo methods; Schottky gate field effect transistors; circuit analysis computing; digital simulation; equivalent circuits; field effect integrated circuits; gallium arsenide; integrated circuit technology; optimisation; semiconductor device models; solid-state microwave devices; GaAs process simulator; Monte Carlo techniques; RF operating characteristics; channel doping; implant annealing; ion implantation; large-signal MESFET model; material deposition; maximum power added efficiency; multivariate Gaussian distributions; output power; physical device model; physics-based model; processing specifications; small-signal gain; yield estimator; Circuit simulation; Coupling circuits; Design optimization; Fabrication; Gallium arsenide; MESFET circuits; Predictive models; Radio frequency; Semiconductor process modeling; Yield estimation;
fLanguage :
English
Journal_Title :
Microwave Theory and Techniques, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9480
Type :
jour
DOI :
10.1109/22.146318
Filename :
146318
Link To Document :
بازگشت