شماره ركورد :
1122894
عنوان مقاله :
توسعه يك مدل اعوجاج موقعيت توسط طيف هاي معنايي جوي با هدف بهبود فرآيند معكوس ژئوكدينگ
عنوان به زبان ديگر :
Developing a Location Distortion Model to Improve Reverse Geocoding with Weather Data
پديد آورندگان :
سبزعلي يمقاني، علي دانشگاه صنعتي خواجه نصيرالدين طوسي - دانشكده مهندسي نقشه برداري , آل شيخ، علي اصغر دانشگاه صنعتي خواجه نصيرالدين طوسي - دانشكده مهندسي نقشه برداري
تعداد صفحه :
13
از صفحه :
1
تا صفحه :
13
كليدواژه :
معكوس ژئوكدينگ , Swarm , طيف هاي معنايي جوي , توابع اعوجاج موقعيت
چكيده فارسي :
عكوس ژئوكدينگ شامل نسبت دادن يك جاي نام به يك مختصات مي باشد. روش هاي رايج معكوس ژئوكدينگ موقعيت اشتراك گذاشته شده فرد را به نزديك ترين مكان (بر اساس فاصله اقليدسي) نسبت مي دهند. در سال هاي اخير و به سبب پيشرفت در فناوري هاي موقعيت يابي حجم عظيمي از داده هاي مكان مبنا در شبكه هاي اجتماعي مكاني مانند Yelp و Swarm توليد شده است. از سوي ديگر سرويس هاي مختلفي امكان ارائه شرايط جوي را در موقعيت و زمان مدنظر به صورت برخط ارائه مي دهند. اين داده ها مي توانند منبعي غني از الگوهاي رفتاري افراد در شرايط جوي مختلف باشند. در اين تحقيق تلاش شده تا با كمك اين داده ها، معكوس ژئوكدينگ بر مبناي فاصله جغرافيايي بهبود داده شود. بدين منظور از داده هاي شرايط جوي براي توليد الگوهاي رفتاري و از داده هاي سرويس Swarm براي جمع آوري اعلامحضورها استفاده شد. داده هاي شرايط جوي در چهار دسته شامل دماي هوا، رطوبت هوا، سرعت باد و ميزان ابري بودن براي توليد طيف هاي معنايي جوي گروه بندي شدند. در اين تحقيق از توابع اعوجاج موقعيت خطي، نسبي و سينوسي جهت برقراري ارتباط شاخص فاصله جغرافيايي با احتملات جوي در فرآيند معكوس ژئوكدينگ استفاده شد. بعلاوه، از دو مجموعه داده آموزشي و تست در مطالعه موردي (ايالت نيويورك) جهت تعيين پارامترهاي مدل و ارزيابي دقت استفاده گشت. نتايج اين تحقيق نشان داد كه با كمك مدل تركيب خطي و طيف هاي معنايي جوي مي توان نتايج معكوس ژئوكدينگ بر مبناي فاصله جغرافيايي را براي شاخص MRR وFirst Position به ترتيب 18.64% و 111.49% بهبود داد.
چكيده لاتين :
Reverse geocoding is the process of assigning a readable place name or address to a point location. Common reverse geocoding methods assign the shared location to the closest venue based on Euclidean distance. In recent years, due to the advancement in positioning technology, a huge amount of spatial data has been generated by location-based social networks such as Yelp and Swarm. Additionally, various services offer the ability to provide online weather data in any coordinate and time. These data can be a valuable source of behavior patterns of different people in different weather conditions. Our study efforts to enhance the reverse geocoding based on spatial distance with the help of these data. In this way, weather condition data were used to make behavior patterns of people and check-in data were collected with the help of Swarm service. Swarm service which was used in our study is a new service from Foursquare that enables gathering check-in through the Twitter Streaming API. After gathering each check-in with Twitter streaming API, Weather data were provided instantly using the OpenWeatherMap API. Weather data were included various attributes that four of them were used in our study. Weather data were used in four categories, including; air humidity, air temperature, wind speed, and cloudiness to produce weather semantic signatures. In our study, linear, rational and sinusoidal functions were used for distorting the spatial distance with weather check-in probability in the process of reverse geocoding. In addition, two training and test data sets have been used in our case study (New York State) to specify the values of the model parameters and to evaluate the result. For the training process of location distortion functions, the check-in data were collected for New York State for one year from 01/03/2017 to 01/03/2018. The results showed that with the linear model and weather semantic signatures, the reverse geocoding results (based on spatial distance) of MRR and First Position indices (New York State) could be improved by 18.64% and 111.49%, respectively. For the process of evaluating linear location distortion function, the check-in data were collected for New York State for seven days from 01/03/2018 to 07/03/2018. The results showed that the reverse geocoding results (based on spatial distance) of MRR and First Position indices (New York State) could be improved by 13.40% and 66.96%, respectively. These results indicated the high capability of the presented model to be used outside of the timeframe of training data. In our study, one of the important challenges in the geolocation services, named the reverse geocoding process, was investigated. The model presented in this study was able to modify the distance between individuals and venues by linear location distortion function. Given that, this model has demonstrated its ability to be used with weather (and temporal) semantic signatures. It can be expected that future studies use other contextual data by location distortion functions.
سال انتشار :
1398
عنوان نشريه :
علوم و فنون نقشه برداري
فايل PDF :
7755267
لينک به اين مدرک :
بازگشت