عنوان به زبان ديگر :
Comparison of estimation of soil salinity using spectroscopy, electromagnetic induction, and remote sensing
پديد آورندگان :
نبي اللهي، كمال دانشگاه كردستان - گروه علوم و مهندسي خاك , عزيزي، كامران دانشگاه كردستان - گروه علوم و مهندسي خاك , داوري، مسعود دانشگاه كردستان - گروه علوم و مهندسي خاك
كليدواژه :
شاخص شوري , شبكه عصبي مصنوعي , محدوده طيفي مرئي- مادون قرمز نزديك , EM38
چكيده فارسي :
سابقه و هدف: شوري خاك يكي از خصوصيات بسيار مهم خاك بوده و بررسي تغييرات مكاني آن، جهت مديريت زراعي، تخريب اراضي و مطالعات زيست محيطي حائز اهميت ميباشد. شوري خاك با استفاده از هدايت الكتريكي (EC) اندازهگيري ميشود و تخمين مقادير شوري خاك با استفاده از اين روشهاي آزمايشگاهي گران و زمانبر است. بنابراين، جمع آوري اطلاعات در مورد توزيع مكاني شوري خاك در مناطق گسترده نياز به تكنيكهاي جديد ارزان دارد. اخيراً تكنيكهاي جديدي از قبيل طيفسنجي مرئي-مادون قرمز نزديك، القاءگر الكترومغناطيس و سنجش از دور براي اندازه گيري شوري خاك به كاربرده شده است. هدف از اين پژوهش تخمين شوري خاك با استفاده از روشهاي طيفسنجي مرئي - مادون قرمز نزديك، القاءگر الكترومغناطيس و سنجش از دور ميباشد.
مواد و روشها: منطقه مورد مطالعه در 20 كيلومتري شمال شرقي شهرستان قروه در استان كردستان واقع شده و سطحي معادل 26000 هكتار را در برميگيرد. 100 نمونه خاك (عمق 30-0 سانتيمتري) جمع آوري و هدايت الكتريكي خاك در عصاره اشباع اندازهگيري شد. متغيرهاي كمكي استفاده شده در اين مطالعه، دادههاي طيفي خاك در محدوده مرئي - مادون قرمز نزديك، قرائتهاي روش القاءگر الكترومغناطيس و دادههاي سنجده ETM+ لندست 8 بودند. در 100 مكان نمونهبرداري، قرائتهاي افقي و عمودي با استفاده از EM38 قرائت شده و شاخص شوري، شاخص NDVI، شاخص روشنايي و باندهاي 1، 2، 3، 4، 5، 6 و 7 با استفاده از نرم افزار Arc GIS و دادههاي سنجده ETM+ لندست 8 محاسبه و استخراج شدند. افزون بر اين، 100 نمونه خاك با استفاده از طيفسنج زميني (مدل FieldSpec®3, ASD, FR, USA) با طول موج 2500- 350 نانومتر تحت اسكن قرار گرفتند. جهت ارتباط دادن بين شوري خاك و متغيرهاي كمكي اين سه روش از مدل شبكه عصبي مصنوعي استفاده گرديد. در نهايت شوري خاك با استفاده از مدل شبكه عصبي مصنوعي برآورد شده و با استفاده از روش اعتبارسنجي متقاطع مورد ارزيابي قرار گرفت.
يافتهها: مقادير شوري خاك كم تا زياد بودند (14/47 -0/23 دسيزيمنس بر متر). بيشينه مقادير شوري خاك در مناطق مركزي (اراضي پست و باير) و كمينه مقادير شوري خاك در اراضي مرتفع و مرتعي مشاهده شد. بر اساس آناليز حساسيت، مدل شبكه عصبي مصنوعي در روش سنجش از دور، شاخص شوري، شاخص NDVI، باند 7 و باند 3 مهمترين متغيرها براي پيشبيني شوري خاك بودند، به طور كلي، اين نتايج نشان داد كه مهمترين متغيرهاي كمكي براي پيشبيني شوري خاك به ترتيب دادههاي طيفي خاك در محدوده مرئي - مادون قرمز نزديك، قرائت عمودي و دادههاي سنجش از دور بودند. روش طيفسنجي مرئي - مادون قرمز نزديك براي پيشبيني شوري خاك داراي مقادير 0/62، 0/94 و 0/028 به ترتيب براي ضريب تبيين، ميانگين خطا و ميانگين ريشه مربعات خطا بود و در مقايسه با القاءگر الكترومغناطيس و سنجش از دور بهتر بود اگر چه تلفيق سه روش (طيفسنجي مرئي - مادون قرمز نزديك، القاءگر الكترومغناطيس و سنجش از دور) با هم بهترين نتايج جهت تخمين شوري خاك را داشت.
نتيجهگيري: مهمترين متغير كمكي براي پيشبيني شوري خاك در منطقه دادههاي طيفي خاك در محدوده مرئي - مادون قرمز نزديك بود. روش القاگر الكترومغناطيس هم متغير مناسبي جهت پيشبيني شوري خاك بوده و ميتواند به عنوان يك روش ارزان، دقيق و سريع براي پيشبيني شوري خاك توصيه شود. تلفيق سه روش (طيفسنجي مرئي - مادون قرمز نزديك، القاءگر الكترومغناطيس و سنجش از دور) با هم بهترين نتايج جهت تخمين شوري خاك را داشت. بنابراين، پيشنهاد ميشود كه مدل شبكه عصبي مصنوعي و دادههاي كمكي همچون دادههاي طيفي روش طيفسنجي مرئي - مادون قرمز نزديك و القاگر الكترومغناطيس در مطالعات آينده استفاده شود.
چكيده لاتين :
Background and objectives: Soil salinity is one of the most important soil properties and it's variability investigation is essential to crop management, land degradation and environmental studies. Soil salinity is measured using electrical conductivity (EC) and estimation of soil salinity contents using experimental methods is expensive and time consuming. Therefore, the collection of information on the spatial distribution of soil salinity in n vast areas requires new inexpensive techniques. Recently, new techniques such as electromagnetic induction, visible - near infrared spectroscopy and remote sensing were applied to measure soil salinity. The purpose of this study is the estimation of soil salinity using visible- near infrared spectroscopy, electromagnetic induction, and remote sensing methods.
Materials and Methods: The study area is located 20 km northeast of Ghorveh city in Kurdistan Province and covers a surface of 26000 hectares. 100 soil samples (0–30 cm depth) were collected and. soil electrical conductivity was measured in a saturated extract. Applied auxiliary data in this study were spectral information of visible - near infrared spectroscopy method, reading of electromagnetic induction method, and ETM+ data of Landsat 8. In the 100 sampling sits, horizontal and vertical readings were read using EM38 and salinity index (SI) and normalized difference vegetative index (NDVI), bright index, and Bands 1, 2, 3, 4, 5, 6 , and 7were computed and extracted using Landsat 8 ETM+ data and Arc GIS software. Moreover, the 100 samples were scanned using spectrometer (model of FieldSpec®3, ASD, FR, USA) with a spectral range of 350 to 2500 nm. To make a relationship between soil salinity and auxiliary data of the three methods, artificial neural network (ANN) model were applied. Finally, soil salinity were estimated using ANN and were validated using cross validation method.
Results and Discussion: Soil salinity contents were low to high (0.23 to 14.47 dSm-1). The highest contents of soil salinity were observed in central regions (low and bare land) and the lowest contents of soil salinity were located in high and range land. Based on sensitive analysis of artificial neural network model, in remote sensing methods salinity index, NDVI index, band 7, and band 3 were the most variables to predict soil salinity. In general, the results showed the most important auxiliary variables to predict soil salinity were spectral information of visible - near infrared range, vertical reading, and remote sensing data, respectively. Soil visible - near infrared spectroscopy method to predict soil salinity had 0.94, 0.27 and 0.64, respectively for determination of coefficient (R2), mean error (ME), and root mean square root (RMSE) and was better compared to the electromagnetic induction, remote sensing although combination of three methods together had the best results to estimate soil salinity.
Conclusion: The most important auxiliary data to predict soil salinity in the study area was spectral information of visible - near infrared range. Electromagnetic induction method also is suitable auxiliary data to predict soil salinity and it can recommend as speed, accurate and cheap method to predict soil salinity. Combination of three methods together (electromagnetic induction, visible - near infrared spectroscopy and remote sensing) had the best results to estimate soil salinity.
Therefore, it is suggested to predict soil salinity, ANN model and auxiliary data such as spectral information of visible - near infrared spectroscopy method and electromagnetic induction will be applied in the future studies.