شماره ركورد :
411107
عنوان مقاله :
يك جمع كننده پيمانه 2N+1 يك گامي مبتني بر نمايش بيت كم ارزش دوتايي از مانده ها
عنوان به زبان ديگر :
A One-Step Modulo 2n+1 Adder Based on Double-Isb Representation of Residues
پديد آورندگان :
جابري پور، قاسم نويسنده دانشكده مهندسي برق و كامپيوتر- دانشگاه شهيد بهشتي تهران Jaberipur, Ghassem
اطلاعات موجودي :
فصلنامه سال 1385
رتبه نشريه :
علمي پژوهشي
تعداد صفحه :
7
از صفحه :
10
تا صفحه :
16
كليدواژه :
Diminshed-l Number Representation , Double-lsb Representation , جمع كننده پيمانه 2N+1 , Residue Number System , نمايش دوبيتي در كم ارزش ترين موقعيت , نمايش يك كم , جمع كننده هاي موازي پيشوندي , جمع كننده هاي عمومي , Prefix Adders , Generic Adders , parallel , نظام هاي عددي مانده اي , Modulo 2n+ I Addition
چكيده لاتين :
Efficien t modulo 2n± I adders are desirab le for computerarit hmetic units based on residue number systems (RNS) with the opular moduli set {2n- 1,2n, 2n+ 1}. Regularn-bit ripple-carry adders or their fast equivalents are suitable for modul on addition . But for the othe r two moduli a co rrecting increment/decrement step besides the primaryn-bit addition is normally required. Several des ign efforts have tried to reduce the latency of the correcting step to a sma ll de lay no t dep endi ng on the word length n, leading to one-s tep modular addition schemes. These include the use of alternative encoding of residues (e .g ., dirninished-I representation of modul o 2n+ 1 numbers), customized (vs . ge neric ) adders (e .g., spec ialized parallel pre fix adders), or compound adders . In this paper we investi gate alternative modulo 2n+ 1 addition schemes , focus on ge neric one-s tep ad der des igns, and use the double- lsb repr esentation of modul o 2n+ I numbers. In a generic modular adder , the ce ntral ab strac t n-b it adde r may be replaced by any concrete adde r architecture meeting the desig ner ʹ s prescribed measures in time, area and power consumption.
سال انتشار :
1385
اطلاعات موجودي :
فصلنامه با شماره پیاپی سال 1385
كلمات كليدي :
#تست#آزمون###امتحان
لينک به اين مدرک :
بازگشت