عنوان مقاله :
كاربرد تبديل هاف تعميميافته در تشخيص گياه چغندرقند از علف هرز با استفاده از ماشينبينايي
عنوان فرعي :
Application of generalized Hough transform for detecting sugar beet plant from weed using machine vision method
پديد آورندگان :
بخشی پور زیارتگاهی، عادل نويسنده گروه مهندسی بیوسیستم، دانشگاه شیراز Bakhshipour Ziaratgahi, A , جعفری، عبدالعباس نويسنده گروه مهندسی بیوسیستم، دانشگاه شیراز Jafari, A. A , امام، یحیی نويسنده گروه زراعت و اصلاح نباتات، دانشگاه شیراز Emam, Y , نصيري، سيد مهدي نويسنده دانشكده كشاورزي- دانشگاه شيراز , , كامگار، سعادت نويسنده گروه مهندسی بیوسیستم، دانشگاه شیراز Kamgar, S , زارع، داریوش نويسنده گروه مهندسی بیوسیستم، دانشگاه شیراز Zare, D
اطلاعات موجودي :
دوفصلنامه سال 1396 شماره 13
كليدواژه :
هاف تعميميافته , چغندرقند , ماشينبينايي مرئي , علف هرز , پردازش شكلي
چكيده فارسي :
از بین بردن علفهای هرز توسط یك دستگاه خودكار نیازمند یك سامانه ماشین بینایی است كه قادر به تشخیص گیاه اصلی از علف هرز باشد. بدین منظور میبایست ابتدا ویژگیهای متمایز بین گیاه اصلی و علفهای هرز مشخص شوند. در این تحقیق با مطالعه عكسهای متعدد چغندرقند وجود یك ویژگی مختص برگ چغندرقند و قابل تمایز با علفهای هرز مرسوم مشخص گردید. این ویژگی یك انحنای S شكل در ابتدای برگ و در نزدیكی دمبرگ بود كه تنها در برگهای چغندرقند قابل مشاهده بوده و در سایر علفهای هرز مرسوم وجود نداشت. برای بیان این ویژگی از تبدیل تعمیمیافته هاف استفاده شد تا به كمك آن مكان هندسی اشكال غیر هندسی تعریف شود. بررسی نتایج حاصل از انجام این روش بر روی تصاویر جمعآوری شده از شرایط واقعی مزرعه نشان داد كه دقت كلی الگوریتم %65/91 می باشد. %92 از بوتههای چغندرقند موجود در تصاویر آزمون به درستی و %7/8 از علفهای هرز به اشتباه به عنوان چغندرقند تشخیص داده شدند. با توجه به اینكه این روش تنها از یك ویژگی شكلی استفاده مینماید، میتوان انتظار داشت كه با افزودن سایر ویژگیهای بافتی و رنگی به قدرت تشخیص درست بالایی دست یافت.
چكيده لاتين :
<strong >Introduction </strong >
Sugar beet (Beta vulgaris L.) as the second most important world’s sugar source after sugarcane is one of the major industrial crops. The presence of weeds in sugar beet fields, especially at early growth stages, results in a substantial decrease in the crop yield. It is very important to efficiently eliminate weeds at early growing stages. The first step of precision weed control is accurate detection of weeds location in the field. This operation can be performed by machine vision techniques.
Hough transform is one of the shape feature extraction methods for object tracking in image processing which is basically used to identify lines or other geometrical shapes in an image. Generalized Hough transform (GHT) is a modified version of the Hough transform used not only for geometrical forms, but also for detecting any arbitrary shape. This method is based on a pattern matching principle that uses a set of vectors of feature points (usually object edge points) to a reference point to construct a pattern. By comparing this pattern with a set pattern, the desired shape is detected. The aim of this study was to identify the sugar beet plant from some common weeds in a field using the GHT.
<strong >Materials and Methods </strong >
Images required for this study were taken at the four-leaf stage of sugar beet as the beginning of the critical period of weed control. A shelter was used to avoid direct sunlight and prevent leaf shadows on each other. The obtained images were then introduced to the Image Processing Toolbox of MATLAB programming software for further processing.
Green and Red color components were extracted from primary RGB images. In the first step, binary images were obtained by applying the optimal threshold on the G-R images.
A comprehensive study of several sugar beet images revealed that there is a unique feature in sugar beet leaves which makes them differentiable from the weeds. The feature observed in all sugar beet plants at the four-leaf stage was a stretched S-shaped curve at the junction of the leaf and petiole. This unique shape characteristic was used as the pattern for sugar beet detection using GHT. To implement the Hough transform in the images, a 50-member group of samples was prepared from S-shaped curve to build appropriate patterns. Desired features for the Hough transformation were extracted from the patterns. In the next step, the attempts were made to find the images for the shapes similar to each of the patterns.
<strong >Results and Discussion </strong >
Plants were thoroughly separated from soil and residues. The accuracy of segmentation algorithm was achieved by almost 100%.
The accuracy of the generalized Hough algorithm was evaluated in two stages. In the first stage, the algorithm accuracy was assessed in detecting patterns in the images. Results showed that the accuracy of the algorithm was 96.21%. In the second stage, the algorithm was evaluated for some other test images, whereas the algorithm achieved an overall accuracy of 91.65%. In some cases, the presence of a large overlap between objects in the image reduced the detection accuracy. This was because of two main reasons; 1) high interference and ambiguity in the object edges, so that Hough transform was not able to detect the predefined patterns in the objects and, 2) weeds highly overlapped with sugar beet plants and thereby they were wrongly detected as sugar beet. However, since there is no or little interference between plants at the four-leaf stage, this interference can be eliminated by morphological operations. Due to this fact, it can be said that the results of GHT algorithm are acceptable for the detection of sugar beet in the plants close to four-leaf stage.
<strong >Conclusions </strong >
A special feature in the shape of sugar beet leaves was used as a criterion to distinguish between sugar beet and weeds. The results showed that by quantifying this special feature, which is an S-shaped curve near the petioles connection of beet leaves, sugar beet can be discriminated from weeds with an accuracy of 91.65 %. Recalled that this feature is a shape characteristic, therefore, the generalized Hough algorithm must be applied prior to plant canopy development, which is consistent with the critical period of weed control in sugar beet fields.
عنوان نشريه :
ماشين هاي كشاورزي
عنوان نشريه :
ماشين هاي كشاورزي
اطلاعات موجودي :
دوفصلنامه با شماره پیاپی 13 سال 1396
كلمات كليدي :
#تست#آزمون###امتحان