شماره ركورد :
974699
عنوان مقاله :
پيش بيني ماهانة تقاضاي گردشگر براي مجموعة تاريخي تخت جمشيد
عنوان به زبان ديگر :
Monthly Forecasting of Tourism Demand for Persepolis Site
پديد آورندگان :
فرجي سبكبار، حسنعلي دانشگاه تهران - دانشكدة جغرافيا , شاهسوني، داود دانشگاه شاهرود - دانشكدۀ علوم رياضي , بهنام مرشدي، حسن دانشگاه تهران , روستا، حسين دانشگاه هرمزگان
تعداد صفحه :
16
از صفحه :
69
تا صفحه :
84
كليدواژه :
مدل آريما , تخت جمشيد , پيشبيني تقاضاي گردشگر , پيشبيني تقاضا , برنامه‌ريزي گردشگري
چكيده فارسي :
پيشبيني شمار ورود گردشگران، اهميت ويژه اي براي گردشگري و فعاليت‌هاي وابسته به گردشگري دارد؛ چرا كه پيشبيني، شاخصي براي تقاضاي آينده بوده و به موجب آن، در پي فراهم كردن اطلاعات پايه براي برنامهريزي و سياستگذاري‌هاي پيدرپي است. در برنامه ريزي گردشگري، پيش­ بيني تعداد گردشگران بيشترين ارتباط و كاربرد را در مبحث مديريت گردشگري دارد؛ زيرا يكي از ابعاد اصلي براي برنامه ريزي گردشگري، برنامه ­ريزي بازاريابي آينده نگر است. تعداد گردشگران با عرضه و تقاضاي بازار ارتباط مستقيم دارد. مديران و برنامه ­ريزان مرتبط با گردشگري، بايد از يك سو در تلاش براي رفع نياز گردشگران و ارائۀ تسهيلات بهتر به آنها باشند و از سوي ديگر، محصولات وابسته به گردشگري ماهيتي ذخيره شدني و انباركردني ندارند. چنانكه اتاق يك هتل كه يك شب رزرو نشود، صندلي يك هواپيما كه مسافري براي آن پيدا نشده و ميز يك رستوران كه خالي مانده است، منافعي است كه از دست رفته و امكان ذخيره كردن براي آينده وجود ندارد و اين خود لزوم اطلاع از ورود گردشگران را براي مديران مرتبط با اين فعاليت­ها دوچندان مي­ كند. بر همين اساس پيشبيني درست تقاضاي گردشگران، مي­تواند به كاهش ريسك در تصميم ­گيري و هزينه منجر شود و اين مهم با اطلاع از تقاضاي گردشگران به منطقه و نيازهايشان در آينده حاصل ميشود. براي پيشبيني تقاضاي گردشگر، از مدل‌هاي گوناگوني چون مدل‌هاي سري زماني، آريما، سيستم‌هاي عصبي ـ فازي، سيستم­هاي ماشين بردار و مانند آنها استفاده مي‌شود كه در اين پژوهش، از مدل سري زماني آريما استفاده شده است. نتايج نشان داده است كه الگوي پيشبيني تقاضاي گردشگر در مجموعۀ تاريخي ـ فرهنگي تخت جمشيد، بر اساس داده هاي رسمي سال‌هاي 1376 تا 1389مجموعۀ پارسه ـ پاسارگاد، فصلي بوده و لذا مدل‌هاي آميخته فصلي براي گردشگران داخلي و خارجي، به طور مجزا برآورد شده است.
چكيده لاتين :
Introduction For efficient organization and effective management of tourism and the pertinent activities, modeling and forecasting the tourist destination areas are vital issues for good performance. It helps make a better policy and plan for supplying tourist requirements. The number of tourists is related to the market supply and demand. Different services are cooperated in supplying tourism productions, such as reception, entertainment, residential, health and information services. On the other hand, regarding demand, there are many factors affecting the tourists’ destination. For example, economic-social conditions, language, culture and motivation that form the request process tourists. Undoubtedly, demand prediction is a drastic factor especially for activities related to tourism. In one hand, manager and planners relevant to tourism make attempt to fulfill tourisms' demands. On the other hand, many of tourisms products like hotel’s rooms, airplane seats, rent car, museum or cultural plans are not being reserved or stored naturally. A hotel room that is not reserved for a night, an airplane seat that has no passenger and a restaurant table that remains empty, are the benefits that have spoiled and they may not be reserved for the future. Therefore, the tourists demand shall be predicted. Alongside the prediction process and tourism entry demand model, the governments can organize their strategies better and prepare appropriate infrastructure for serving the tourists; the private sectors could make appropriate marketing strategies for obtaining the maximum benefits from tourist entry increase, as well. The forecasting of tourism demand is an essential tool for determining the required supply and the appropriate distribution method of tourism services. When services (like tourism) achieve desirable market, its current amount and the future potential volume shall be estimated precisely. Market underestimation or overestimation makes the supplier lose the main part of his/her interest. Hence, planning and development of tourism require identifying such these kinds of motivations and demands. Accordingly, what is vitally important for the tourism management is the amount of accuracy of prediction model that led to development and diversity of tools and new methods in prediction. Methodology In this article, the plan is to forecast the number of tourist arrival for the historical - cultural site of Perspolis in south Iran. The time series involves monthly data that were collected for both domestic and international tourists. In order to testify the performance of forecasting method, the collected data were divided into two sets, training (Farvardin 1376- Esfand 1387) and testing (Farvardin1388- Esfand 1389). We used seasonal ARIMA model to detect the hidden structure of data and finally forecast the arrivals for both data sets. Results and Discussion Based on the Box & Jenkins approach, both time series data were analyzed. In this approach, stationarity of time series is a preliminary condition. Therefore, before any attempts, the time series were made stationary by differencing. The result of data analysis of Persepolis- domestic tourism Since the number of visitors in Farvadin (April) of each year has considerable difference from the other menthes, therefore, it is likely that the forecasting model would be seasonal. The great amount of autocorrelation function in the lags 12, 24 & 36 confirms the existence of the seasonal model. Since the seasonal data are not stationary, differencing can help to make a steady time series. The results showed that, seasonal differencing in order 12, and then first differencing make the time series in an acceptable stationary form. Thus, we could determine the seasonal model of ARIMA (p,1,q) (P,1,Q)12 according to the ACF and PACF of the final series. Exponential decay of PACF in some of the first lags (figure 3, right frame) and the fact that autocorrelation amount in lag 1,r1,is significantly different from zero, shows no seasonal moving average model of order 1, MA(1), i.e. p=0, q=1. It is also observed in autocorrelation function (figure 3, left frame) that the amount of r24 is significant and this means a seasonal MA (2) (P=0, Q=2). Therefore, the final model of ARIMA (0,1,1) (01,2)12 may be written as the following: 1) 􁈺1 − 􀜤􁈻􁈺1 − 􀜤12􁈻􀜻􀯧 = 􁈺1 − 􀟠1􀜤􁈻 􁉀1 − 􀟙1􀜤12 − 􀟙􀬶􀜤24􁉁 􀝁􀯧 2) 􀜻􀯧 − 􀜻􀯧􀬿1 − 􀜻􀯧􀬿24 + 􀜻􀯧􀬿25 = 􀝁􀯧 − 􀟠1􀝁􀯧􀬿1 − 􀟙1􀝁􀯧􀬿12 + 􀟙1􀟠1􀝁􀯧􀬿13 − 􀟙2􀝁􀯧􀬿24 + 􀟙2􀟠1􀝁􀯧􀬿25 The result of data analysis on Persepolis- international tourism The plot of this time series implies that it is non-stationary. However, seasonality is not obvious in the last example, but since the amount of r6 and r12 in autocorrelation diagram are located out of the 95% confidence interval, a seasonal differencing with a six-month course is suggested. The results show that the six-month seasonal differentiation series is not stationary, but if this series be re-differencing (first order) we may observe an approximately stationary series. In order to determine the order and the kind of series in non-seasonal part of ARIMA (p,1,q)(P,1Q)6, we could consider the amount of autocorrelation as an evidence of damping sine wave to zero and since the two first amount of partial autocorrelation are significant and different from zero, the unseasonal autoregressive model, p=2, q=0, is suggested. In the seasonal part, (P,1,Q), r6, r12,r18,…., are damping to zero and since the amount of partial autocorrelation in lag 6 is significant, the seasonal AR model with Q=0 & P=1 seems to be more appropriate. ARIMA (2,1,0)(1,1,0)6 is as the following. 3) 􁈺1 − 􀟚1􀜤 − 􀟚2􀜤2􁈻􁈺1 − 􀟜􀜤6􁈻􁈺1 − 􀜤􁈻􁈺1 − 􀜤6􁈻􀜻􀯧 = 􀝁􀯧 Evaluation of the suggested model was made by comparing real test data versus the forecasted data. Figures 5 and 9 successfully showed that both real and forecasted values of tourist arrival have the same variation in different months. Conclusion In this research, we conclude that, the tourist arrival time series can be stationary by two differentiations (seasonal and first order differencing). In other words, the seasonal factor of this series is the inseparable part of them, with this difference that, the seasonal course for domestic and foreign visitors is 12 & 6 months, respectively. The results also show that the seasonal ARIMA model is an appropriate estimation for forecasting the number of tourists.
سال انتشار :
1393
عنوان نشريه :
پژوهش هاي جغرافياي انساني
فايل PDF :
3687874
عنوان نشريه :
پژوهش هاي جغرافياي انساني
لينک به اين مدرک :
بازگشت